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Using A Compact Convolutional Neural Network
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Low Surface Brightness Galaxies

Motivation & Methods

Distributions of all objects

• Detection of LSBGs (Low Surface Brightness 
Galaxies), UDGs (Ultra Diffuse Galaxies), and 
distant galaxies that are strongly dimmed 
due to Tolman effect

• New deep sky surveys like LSST and Euclid 
promise increased discovery of LSBGs

• Vast volume of available data poses a 
challenge for conventional source detection 
methods

• Machine learning can improve accuracy or 
efficiency of LSBG detection

• Convolutional Neural Networks (CCNs) can 
be used to improve established pipelines

• Use of efficient/small architectures with 
depthwise-separable convolution (DSC) and 
small number of layers (compact CNN)

• Our method:
Apply a cCNN to filter detection results from 
Source Extractor in Python
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CNN Structure

Negative dataset
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Positive dataset 
• 779 LSBGs from Greco et al. [5]

• Objects from Morishita [6]
• Noise cutouts from Morishita [6]

Fig 1. Final CNN using depth-wise separable convolution

Training/Validation
• The data was divided into 3 splits:
• Training dataset (70%)
• Validation dataset (15%)
• Test dataset (15%)

• Augmentation of the training data through 
transforms (rotating, flipping, inverting)

• Weight decay and early stopping were used 
for regularization

• Hyperparameters optimized

• Pos. Weight was calculated to alleviate 
the influence of class imbalance

• Optimizer: AdamW
• Start Learning Rate 𝜂 = 1e-3
• Normalized Weight Decay 𝜆 = 2.537e-3
• Training was done for 100 epochs with a 

validation pass after every epoch
• the model with the best F1 score on the 

validation set was saved as final model
• Download g, r, i fits for one HSC-SSP tract
• Inverse-variance-weighted stacking of the 

different bands  
• Source Extractor in Python [2] search in the 

image with low threshold 
• Parameters: Threshold = 1.1, minarea= 10, 

mincont = 0.001
• CNN is used to filter the resulting catalog for 

LSBG candidates (2412 Objects)
• Automated photometry with Photutils
• Filtering by size and surface brightness (22 

Objects remain)
• Visual inspection of Objects (15 Objects 

remain)
• Checking for Objects in NED (6 Objects not in 

NED)

Search for LSBGs

• HSC 𝟓𝝈 𝒅𝒆𝒑𝒕𝒉 (𝒈): 26.5 mag [1]

A few interesting objects (g-band)

Metric Result
TP 117
FN 0
FP 13
TN 1448
F1 94.74 %
MCC 94.45 %
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